On a warm summer evening, a visitor to 1920s Göttingen, Germany, might have heard the hubbub of a party from an apartment on Friedländer Way. A glimpse through the window would reveal a gathering of scholars. The wine would be flowing and the air buzzing with conversations centered on mathematical problems of the day. The eavesdropper might eventually pick up a woman’s laugh cutting through the din: the hostess, Emmy Noether, a creative genius of mathematics.
At a time when women were considered intellectually inferior to men, Noether (pronounced NUR-ter) won the admiration of her male colleagues. She resolved a nagging puzzle in Albert Einstein’s newfound theory of gravity, the general theory of relativity. And in the process, she proved a revolutionary mathematical theorem that changed the way physicists study the universe.
It’s been a century since the July 23, 1918, unveiling of Noether’s famous theorem. Yet its importance persists today. “That theorem has been a guiding star to 20th and 21st century physics,” says theoretical physicist Frank Wilczek of MIT.
Noether was a leading mathematician of her day. In addition to her theorem, now simply called “Noether’s theorem,” she kick-started an entire discipline of mathematics called abstract algebra.
CONSTANT BEAUTY Symmetries imply that certain quantities are conserved, according to Noether’s theorem. The equation above expresses that concept: The quantity in the parentheses doesn’t change over time. E. Otwell
But in her career, Noether couldn’t catch a break. She labored unpaid for years after earning her Ph.D. Although she started working at the University of Göttingen in 1915, she was at first permitted to lecture only as an “assistant” under a male colleague’s name. She didn’t receive a salary until 1923. Ten years later, Noether was forced out of the job by the Nazi-led government: She was Jewish and was suspected of holding leftist political beliefs. Noether’s joyful mathematical soirees were extinguished.
She left for the United States to work at Bryn Mawr College in Pennsylvania. Less than two years later, she died of complications from surgery — before the importance of her theorem was fully recognized. She was 53.
Although most people have never heard of Noether, physicists sing her theorem’s praises. The theorem is “pervasive in everything we do,” says theoretical physicist Ruth Gregory of Durham University in England. Gregory, who has lectured on the importance of Noether’s work, studies gravity, a field in which Noether’s legacy looms large.
Making connections
Noether divined a link between two important concepts in physics: conservation laws and symmetries. A conservation law — conservation of energy, for example — states that a particular quantity must remain constant. No matter how hard we try, energy can’t be created or destroyed. The certainty of energy conservation helps physicists solve many problems, from calculating the speed of a ball rolling down a hill to understanding the processes of nuclear fusion.
Symmetries describe changes that can be made without altering how an object looks or acts. A sphere is perfectly symmetric: Rotate it any direction and it appears the same. Likewise, symmetries pervade the laws of physics: Equations don’t change in different places in time or space.
VISIONARY Emmy Noether’s 1918 theorems have become a pillar of modern-day physics. Photo Archives/Special Collections Department/Bryn Mawr College Library
Noether’s theorem proclaims that every such symmetry has an associated conservation law, and vice versa — for every conservation law, there’s an associated symmetry.
Conservation of energy is tied to the fact that physics is the same today as it was yesterday. Likewise, conservation of momentum, the theorem says, is associated with the fact that physics is the same here as it is anywhere else in the universe. These connections reveal a rhyme and reason behind properties of the universe that seemed arbitrary before that relationship was known.
During the second half of the 20th century, Noether’s theorem became a foundation of the standard model of particle physics, which describes nature on tiny scales and predicted the existence of the Higgs boson, a particle discovered to much fanfare in 2012 (SN: 7/28/12, p. 5). Today, physicists are still formulating new theories that rely on Noether’s work.
When Noether died, Einstein wrote in the New York Times: “Noether was the most significant creative mathematical genius thus far produced since the higher education of women began.” It’s a hearty compliment. But Einstein’s praise alluded to Noether’s gender instead of recognizing that she also stood out among her male colleagues. Likewise, several mathematicians who eulogized her remarked on her “heavy build,” and one even commented on her sex life. Even those who admired Noether judged her by different standards than they judged men.
Symmetry leads the way
Log in
Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.