How Julia Robinson helped define the limits of mathematical knowledge
Born 100 years ago, she was key in solving Hilbert’s 10th problem

Julia Robinson helped set the foundation for a solution to Hilbert’s 10th problem, a deep question about what mathematicians can and can’t know.
The Balbusso Twins
Every December 8 for years, Julia Robinson blew out the candles on her birthday cake and made the same wish: that someday she would know the answer to Hilbert’s 10th problem. Though she worked on the problem, she did not care about crossing the finish line herself. “I felt that I couldn’t bear to die without knowing the answer,” she told her sister.
In early 1970, just a couple of months after her 50th birthday, Robinson’s wish came true. Soviet mathematician Yuri Matiyasevich announced that he had solved the problem, one of 23 challenges posed in 1900 by the influential German mathematician David Hilbert.
Matiyasevich was 22 years old, born around the time Robinson had started thinking about the 10th problem. Though the two had not yet met, she wrote to Matiyasevich shortly after learning of his solution, “I am especially pleased to think that when I first made the conjecture you were a baby and I just had to wait for you to grow up!”
The conjecture Robinson was referring to was one of her contributions to the solution to Hilbert’s 10th problem. Matiyasevich put the last piece into the puzzle, but Robinson and two other American mathematicians did crucial work that led him there. Despite the three weeks it took for their letters to reach each other, Robinson and Matiyasevich started working together through the mail in the fall of 1970. “The name of Julia Robinson cannot be separated from Hilbert’s 10th problem,” Matiyasevich wrote in an article about their collaboration.
Robinson was the first woman to be elected to the mathematics section of the National Academy of Sciences, the first woman to serve as president of the American Mathematical Society and a recipient of a MacArthur Fellowship. She achieved all of this despite not being granted an official faculty position until about a decade before her death in 1985.
Robinson never thought of herself as a brilliant person. In reflecting on her life, she focused instead on the patience that served her so well as a mathematician, which she attributed in part to a period of intense isolation as a child. At age 9, while living with her family in San Diego, she contracted scarlet fever, followed by rheumatic fever.

Penicillin had just been discovered and was not yet available as a treatment. Instead, she lived at the home of a nurse for a year, missing two years of school.
Even after she rejoined her family, attended college and married, complications from rheumatic fever led to lifelong health problems, including the inability to have children. After a much-wanted pregnancy ended in miscarriage, doctors told her another pregnancy could kill her. She had a heart operation when she was around 40 years old that improved her health, but she was never able to have the family she deeply desired.
Despite her accomplishments, Robinson was reluctant to be in the spotlight, only consenting to tell her story for publication near the end of her life. The quotes attributed to Robinson in this article come from that record, an “autobiography” written by her older sister, Constance Reid, in close consultation with Robinson.
The 10th problem
Hilbert issued the first of his 23 challenges to the mathematics community during a lecture in Paris at the 1900 International Congress of Mathematicians. The questions, which helped guide the course of mathematics research for the next century and through the present day, spanned several disciplines in mathematics, probing everything from the logical foundations of various branches of mathematics to very specific problems relating to number theory or geometry.
The 10th problem is a deep question about the limitations of our mathematical knowledge, though initially it looks like a more straightforward problem in number theory. It concerns expressions known as Diophantine equations. Named for Diophantus of Alexandria, a third century Hellenistic mathematician who studied equations of this form in his treatise Arithmetica, a Diophantine equation is a polynomial equation with any number of variables and with coefficients that are all integers. (An integer is a whole number, whether positive, negative or zero.)
Examples of Diophantine equations include everything from simple linear equations such as 5x+y=7 (the variables are x and y, and their coefficients are 5 and 1) to the Pythagorean distance formula a2+b2=c2 (the variables are a, b and c, and their coefficients are all 1) to towering monstrosities in googols of variables.
Mathematicians are interested in whether Diophantine equations have solutions that are also integers. For example, Pythagorean triples — sets of numbers such as 3, 4 and 5 or 5, 12 and 13 — are solutions to the equation a2+b2=c2. Some Diophantine equations have integer solutions, and some do not. While a2+b2=c2 has infinitely many integer solutions, the similar equation a3+b3=c3 has none (except for solutions including zeros, which mathematicians consider uninteresting).